

# **Duration Addition to electricity Storage (DAYS)**

The why and how of long-duration energy storage



**Program Director** 

Advanced Research Projects Agency – Energy (ARPA-E)



#### What's needed to enable LDES

- ▶ Technology proven to be cheap and reliable
- Applications (duty cycles)
- Niche / entry markets
- Policy drivers



### **Objectives of this meeting**

- Introduce the DAYS projects
- Learn what's happening from external stakeholders
- Discuss potential early applications and requirements
- Start building a LDES community



### Who's here: DAYS, IONICS awardees

#### Thermal









Westinghouse



EPEI RESEARCH INSTITUTE











#### **Electrochemical**









#### **IONICS**







#### Who's here: external stakeholders



























Office of ELECTRICITY



#### **Outline**

- A brief overview of DAYS
- Potential early applications



# **Grid-Scale Storage Applications Today**



**Examples of other applications:** 

Reserves Distribution upgrade deferral Power quality

Flexible ramping Demand charge management



## Dispatching variable (and uncertain) renewables

### What will it take...

#### To make the availability of this:



#### Look more like this:





















# Another viewpoint: integrating renewables with the grid

#### Aggregate footprint at 50% wind & 50% solar





- Wood Mackenzie report on 2019 polar vortex
- Examined grid conditions if capacity was 50% solar and 50% wind
- For solar to provide relief for low wind: 18-40 hours of storage

https://pv-magazine-usa.com/2019/02/12/wood-mackenzie-looks-at-the-polar-vortex-and-100-renewable-energy/



# Digging deeper: levelized cost of storage (LCOS)

$$LCOS(\$ \cdot kWh^{-1} \cdot cycle^{-1}) = \left[ \left( \frac{1}{\eta_{RTE}} - 1 \right) P_c \sum_{t=1}^{T} \frac{n_c(t)}{(1+r)^t} + \sum_{t=1}^{T} \frac{0\&M(t)}{(1+r)^t} + \left( \frac{C_E}{\eta_D} + \frac{C_P}{d} \right) \right] * \left[ \sum_{t=1}^{T} \frac{n_c(t)}{(1+r)^t} \right]^{-1}$$

#### Primarily application-dependent parameters

- P<sub>c</sub> input electricity price in \$/kWh
- d duration of storage at rated power in hours
- **n**<sub>C</sub> number of equivalent full cycles

#### Primarily technology-dependent parameters

- $\eta_{RTE}$  round-trip efficiency of storage (AC basis)
- $\eta_D$  discharge efficiency of storage (AC basis)
- O&M fixed and variable operations and maintenance cost (including component replacements)
- $C_E$  installed marginal capital cost of energy in \$/kWh
- C<sub>P</sub> installed marginal capital cost of power in \$/kW



## Impact of capex for power and for energy





### The DAYS cost target





### **DAYS** cost-duration target





#### The DAYS innovations

#### **Thermal**

- Fluidized bed heat exchanger
- Thermochemical Mg-Mn-O bed
- Reversible turbomachine
- Full loop controls system
- ▶ Supercritical CO<sub>2</sub> cycle

#### **Geomechanical**

Elastic strain in underground rocks

#### **Electrochemical**

- Aqueous sulfur
- Zr-Br<sub>2</sub> membrane-less, single tank
- Reversible fuel cell for H<sub>2</sub>O<sub>2</sub>
- Sulfur-manganese flow battery

#### **Thermophotovoltaic**

High efficiency, stable over time



#### **Outline**

A brief overview of DAYS

Potential early applications



#### Islands and remote areas



- No contiguous grid
- Rural electricity: \$0.60-\$1.20/kWh
- Lots of renewable resources, including RoR hydro and pumped hydro
- Large seasonal variations
- Consisting diesel genset alternatives



### Transmission and distribution projects



- Utilities pursuing "non-wires" deferral projects
- Current RFP for Orange & Rockland Utilities
  - System reliability and load relief
  - 17 MW of load relief for 24 hours
  - Traditional solution: upgrade to two 35 MVA transformers

UTILITY DIVE

Brattle: Electrification could drive \$600B in transmission spending by 2050

### Data centers, critical infrastructure



Synergy Research, 2017

- Data traffic is doubling every 2-3 years
- Data centers today consume 200 TWh worldwide
- ▶ By 2030: 8% of global electricity demand
- ▶ 45% of data centers are in the U.S.
- Backup power now: uninterruptible power supply, diesel generators

Could long-duration storage replace diesel gensets at critical sites such as data centers?



### Thinking about duty cycles

Y. Shi, et al., IEEE Trans. Power Sys. 33, 2882-2894 (2017)

# How Big Batteries at Data Centers Could Replace Power Plants

Battery systems intended as backups may help companies like Microsoft increasingly employ renewable energy

By Benjamin Storrow, E&E News on July 19, 2018

- Univ. of WA study: 11% decrease in annual energy bill from peak shaving
- Additional revenue from frequency regulation
- Microsoft: worked with PJM and Eaton on frequency regulation with a data center

What's the duty cycle for a long-duration system?



## Long-duration storage is an enabling technology



Moving toward 24x7 Carbon-Free Energy at Google Data Centers: Progress and Insights

2. A diverse portfolio of carbon-free energy sources — whether variable or dispatchable — can have a greater impact than a single variable source. In the absence of long-duration energy storage, a single source of renewable energy is generally not sufficient to provide a 24x7, 100% match with a data center's load.



### Summary

- ▶ The onus right now is on the technology community (us)
- ▶ There are entry markets
- ▶ Longer-term picture: unclear, but policy will follow technology



### Acknowledgements

Meeting Planner
Nancy Hicks

Programmatic Support
Erin Gilley
Alex Menzies

Tech-to-Market
Max Tuttman



**Technical Support** 



Rusty Heffner



Vivien Lecoustre



Sean Vail



Gokul Vishwanathan

#### **The Brains Behind DAYS**



Paul Albertus



Joe Manser



# Thank you!





https://arpa-e.energy.gov

scott.litzelman@hq.doe.gov

